AeroShell Turbine Oil 560

Synthetic lubricating oil for aircraft turbine engines

AeroShell Turbine Oil 560 is a third generation, high performance, low coking 5 mm²/s synthetic hindered ester oil incorporating a carefully selected and finely balanced combination of additives to improve thermal and oxidation stability.

Main Applications

- Changes which have taken place over the last twenty years in engine performance (in terms of improved fuel consumption, higher operating temperatures and pressures) and maintenance practices have resulted in increased severity in lubricant operating conditions.
- AeroShell Turbine Oil 560 was developed to withstand the hostile environments of today’s high powered, high compression engines in which the older generation of oils can be stressed up to and beyond their thermal limits, as evidenced by oil coking in the high temperature bearing areas.
- By overcoming the problems associated with using old technology oils in new technology engines, AeroShell Turbine Oil 560:
 - maintains a cleaner engine
 - provides improved load carrying capacity
 - reduces maintenance costs
 - prolongs bearing life in both new and existing engines.
- In order for military authorities to take advantage of this better performance in military engines the specification MIL-PRF-23699 was re-written to include a “High Thermal Stability” (HTS) grade as well as the Standard (STD) and Corrosion Inhibited (C/I) grades. AeroShell Turbine Oil 560 is fully approved as an HTS oil. With the advent of the new civil turbine oil specification, SAE AS5780, which has more stringent requirements than the military specification, AeroShell Turbine Oil 560 was approved as a SPC (Standard Performance Capability) oil.
- With effect from January 1st 2002, AeroShell Turbine Oil 560 has been manufactured with an improved formulation to further enhance its anti-coking performance.
- AeroShell Turbine Oil 560 contains a synthetic ester oil and should not be used in contact with incompatible seal materials and it also affects some paints and plastics.

Specifications, Approvals & Recommendations

- MIL-PRF-23699G Grade HTS
- SAE AS5780D Grade SPC
- DEF STAN 91-101 (British) equivalent
- COMAC QPL-CMS-OL-202
- DCSEA 299/A (French) equivalent
- VNII NP 50-1-4F, B3V, LZ-240, VNII NP 50-1-4U and 36/Ku-A (Russian) analogue
- NATO Code O-154
- Joint Service Designation OX-27 equivalent
- Pratt & Whitney 521C Type II
- General Electric D-50 TF 1
- Allison EMS - 53 (Obsolete)

For the latest approval, please confirm with the equipment manufacturer.

AeroShell Turbine Oil 560 is approved for use in all models of the following engines:

- CFM: CFM56 & LEAP series
- Engine Alliance: GP7200 series
- GE: CF34, CF6, GE90, GE9X, Passport, H series, Catalyst, CF 700
- Honeywell: CFE738, ALF502, LF507, TPE331, CTS800
- IAE : V2500 Series
- Pratt & Whitney, Canada: JT15, PT6, PW110, 120, 200, 300 series
- Pratt & Whitney: JT3C, JT8D, JT9D, PW4000, PW6000 and PW2000 (for in-service evaluation)
- Rolls-Royce: Model 250, BR 710, RB211 series, Tay, Spey, Tyne, Avon, RB199
- Safran Helicopter Engines: MTR390, Astazou, Arrius, Artouste, Astazou, Arrius
- APU: Honeywell: All APUs for 5cSt oils
- Pratt & Whitney: APS Series for 5cSt oils, PW 901, PW980

Full details of the approval status of AeroShell Turbine Oil 560 in APUs and other engines/accessories is available. AeroShell Turbine Oil 560 is also approved for use in the industrial and marine versions of Pratt & Whitney FT Series engines, all General Electric LM Series Aero Derived Engine and Siemens where Rolls Royce engines are approved.

For a full listing of equipment approvals and recommendations, please consult your local Shell Technical Helpdesk.

Typical Physical Characteristics

<table>
<thead>
<tr>
<th>Properties</th>
<th>Method</th>
<th>MIL-PRF-23699G Grade HTS</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil type</td>
<td></td>
<td>Synthetic ester</td>
<td>Synthetic ester</td>
</tr>
<tr>
<td>Kinematic viscosity @100°C mm²/s</td>
<td>ASTM D445</td>
<td>4.90 to 5.40</td>
<td>5.21</td>
</tr>
<tr>
<td>Kinematic viscosity @40°C mm²/s</td>
<td>ASTM D445</td>
<td>23.0 min</td>
<td>26.7</td>
</tr>
<tr>
<td>Kinematic viscosity @-40°C mm²/s</td>
<td>ASTM D2532</td>
<td>13 000 max</td>
<td>10 229</td>
</tr>
<tr>
<td>Flashpoint Cleveland Open Cup °C</td>
<td>ASTM D92</td>
<td>246 min</td>
<td>262</td>
</tr>
<tr>
<td>Pour Point °C</td>
<td>ASTM D97</td>
<td>-54 max</td>
<td>-60</td>
</tr>
<tr>
<td>Total Acidity mgKOH/g</td>
<td>SAE-ARP-5088</td>
<td>1.00 max</td>
<td>0.20</td>
</tr>
<tr>
<td>Evaporation Loss 6.5 hrs % m</td>
<td>ASTM D972</td>
<td>10 max</td>
<td>2.0</td>
</tr>
<tr>
<td>Foaming Tendency ml</td>
<td>ASTM D892</td>
<td>Must pass</td>
<td>Passes</td>
</tr>
<tr>
<td>Swelling of Standard Synthetic Rubber - SAE-AMS 3217/4, 72 hrs % swell</td>
<td>FED-STD-791 M.3604</td>
<td>5 to 25</td>
<td>12.9</td>
</tr>
<tr>
<td>Elastomer compatibility, % weight change after 24/120 hours: Fluorocarbon @200°C</td>
<td>DEF STAN 05-50 M.22</td>
<td>10/15 max</td>
<td>Passes</td>
</tr>
<tr>
<td>Elastomer compatibility, % weight change after 24/120 hours LCS Fluorocarbon @200°C</td>
<td>DEF STAN 05-50 M.22</td>
<td>10/20 max</td>
<td>Passes</td>
</tr>
<tr>
<td>Elastomer compatibility, % weight change after 24/120 hours Nitrile @130°C</td>
<td>DEF STAN 05-50 M.22</td>
<td>19.5/22 max</td>
<td>Passes</td>
</tr>
<tr>
<td>Elastomer compatibility, % weight change after 24/120 hours Silicone @175°C</td>
<td>DEF STAN 05-50 M.22</td>
<td>16.5/16.0 max</td>
<td>Passes</td>
</tr>
<tr>
<td>Elastomer compatibility, % weight change after 24/120 hours Perfluoroelastomer @200°C</td>
<td>DEF STAN 05-50 M.22</td>
<td>N/A</td>
<td>Passes</td>
</tr>
<tr>
<td>Thermal Stability / Corrosivity 96 hrs - Metal weight change mg/cm²</td>
<td>FED-STD-791 M.3411</td>
<td>±4.0 max</td>
<td>Passes</td>
</tr>
<tr>
<td>Thermal Stability / Corrosivity 96 hrs - viscosity change %</td>
<td>FED-STD-791 M.3411</td>
<td>5.0 max</td>
<td>1.3</td>
</tr>
</tbody>
</table>
These characteristics are typical of current production. Whilst future production will conform to Shell’s specification, variations in these characteristics may occur.

Health, Safety & Environment

Health and Safety

AeroShell Turbine Oil 560 is unlikely to present any significant health or safety hazard when properly used in the recommended application and good standards of personal hygiene are maintained.

Guidance on Health and Safety is available on the appropriate Safety Data Sheet, which can be obtained from https://www.epc.shell.com/

Avoid contact with skin. Use impervious gloves with used oil. After skin contact, wash immediately with soap and water.

Protect the Environment

Take used oil to an authorised collection point. Do not discharge into drains, soil or water.

Additional Information

Advice

Advice on applications not covered here may be obtained from your Shell representative.